skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Blair, Samuel Enrique"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Globally, universities have heavily invested in makerspaces. This investment requires an understanding of how students use tools and how tools to aid in engineering education, as well as how the spaces can be improved. Network analysis of human systems can often yield valuable information about how the networks work and function. Applying network techniques to makerspaces can yield helpful information that is otherwise not visible. This thesis’s primary focus is the application of a variety of bio-inspired network techniques to improve the understanding of the makerspace. Several parallels can be drawn between makerspace networks and other mutualistic networks, such as plant-and-pollinator networks where the system’s success depends on the interaction between the two species. The ecological metrics would establish measurable values that the health and conditions of a network can be evaluated using. These three metrics are nestedness, modularity, and connectance, which can provide structural information about the network and act as diagnostics tools that can change depending on different system conditions. The makerspace at the universities went through several regulatory changes due to COVID-19, providing a unique opportunity to utilize the metrics to analyze the health of the space under higher regulatory restrictions and return to normal operations. The makerspace is converted into a bipartite network to allow for ecological analysis techniques where the spaces are modeled with students interacting with tools. Null models evaluate the significance of the nestedness and modularity results. Findings indicate that makerspaces tend to be structurally nested, but when compared to normal operating conditions, they can be seen to exhibit modularity during the higher restriction environment. The makerspace network and subsequent analysis provide insight into the use of ecological metrics in human systems and provide potential ideas for results to be used in various networks. The following network analysis also yields valuable information identifying essential hub tools and student interactions within the space, showcasing the capabilities the ecological study of human networks can have on human systems. 
    more » « less